
A Large-scale Study on API Misuses in the Wild
Xia Li

Department of Software Engineering and
Game Design, Kennesaw State University

xli37@kennesaw.edu

Jiajun Jiang†

College of Intelligence and
Computing, Tianjin University

jiangjiajun@tju.edu.cn

Samuel Benton
Department of Computer Science,
The University of Texas at Dallas

Samuel.Benton1@utdallas.edu

Yingfei Xiong
Key Laboratory of High Con�dence Software

Technologies (MoE); DCST, Peking University
xiongyf@pku.edu.cn

Lingming Zhang
Department of Computer Science,

University of Illinois at Urbana-Champaign
lingming@illinois.edu

Abstract—API misuses are prevalent and extremely harmful.
Despite various techniques have been proposed for API-misuse
detection, it is not even clear how different types of API misuses
distribute and whether existing techniques have covered all major
types of API misuses. Therefore, in this paper, we conduct the
�rst large-scale empirical study on API misuses based on 528,546
historical bug-�xing commits from GitHub (from 2011 to 2018).
By leveraging a state-of-the-art �ne-grained AST differencing
tool, GumTree, we extract more than one million bug-�xing
edit operations, 51.7% of which are API misuses. We further
systematically classify API misuses into nine different categories
according to the edit operations and context. We also extract
various frequent API-misuse patterns based on the categories
and corresponding operations, which can be complementary to
existing API-misuse detection tools. Our study reveals various
practical guidelines regarding the importance of different types
of API misuses. Furthermore, based on our dataset, we perform
a user study to manually analyze the usage constraints of 10
patterns to explore whether the mined patterns can guide the
design of future API-misuse detection tools. Speci�cally, we �nd
that 7,541 potential misuses still exist in latest Apache projects
and 149 of them have been reported to developers. To date, 57
have already been con�rmed and �xed (with 15 rejected misuses
correspondingly). The results indicate the importance of studying
historical API misuses and the promising future of employing our
mined patterns for detecting unknown API misuses.

Index Terms—Pattern generation, Program adaptation, Code
abstraction

I. INTRODUCTION

Over the past decades, software systems have been widely
used in almost all aspects of human lives, and are making our
lives more and more convenient. However, software systems
also inevitably suffer from bugs or faults, which can incur
signi�cant loss of properties and even lives. During modern
software development, developers always reuse Application
Programming Interfaces (APIs) provided by third-party li-
braries and frameworks rather than implementing from scratch
to improve work ef�ciency and code quality. As a result, API
related bugs spread widely due to API misuses, reducing soft-
ware performance or causing software crashes [1], [2]. In Java,
for example, the correct way to create a new thread is to call
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API Thread.start() , while Thread.run() is often misused,
which does not create new threads. Therefore, analyzing the
behaviors of API misuses is essential and can provide practical
guidance for software development, especially the detection
of API misuses. Such misuse behaviors can be potentially
obtained from historical bug �xes.

A large number of historical bug �xes are publicly avail-
able on open-source platforms (e.g., GitHub [3] and Source-
Forge [4]) and issue tracking systems (e.g., JIRA [5]). Many
researchers have conducted various studies to analyze bug
�xes and have many �ndings. For example, Martinez and
Monperrus [6] found that most bug �xes are related to more
than one source �le, and statement-level code changes (e.g.,
inserting or deleting a statement) are most prevalent by analyz-
ing 89,993 historical bug �xes. Even though these researchers
have studied historical bug �xes, they only examined a small
dataset, and the �ndings could be limited. In this paper, we
conduct a study on API misuses by analyzing much more
comprehensive bug-�xing dataset than any prior work.

Many techniques de�ne API misuses as violations of certain
frequent API usage patterns which are mined from source
code [7]–[11]. These techniques were evaluated to be effective
on some kinds of misuses. However, a recent study on state-
of-the-art API-misuse detectors [1] shows that API misuses
are prevalent and existing API-misuse detectors suffer from
extremely low precision and recall on the widely used API-
misuse dataset MUBENCH [12]. MUBENCH includes only
89 API misuses from 33 real-world projects, which not only
makes it hard to analyze the distribution of various API
misuses but also incurs dataset over�tting issues for evaluating
existing API-misuse detection techniques.

Due to the limited amount of dataset in previous studies
of bug-�xing and API misuses, in this paper, we conduct a
more systematic and extensive empirical study by analyzing
a large-scale bug-�xing dataset. We start with mining the
historical repositories from GitHub Archive [13] that records
the public GitHub timeline dataset. Then, we extract all bug-
�xing commits of Java projects from 2011 to 2018 according
to speci�c search criteria, resulting in 528,546 bug-�xing com-
mits. Finally, we extract �ne-grained edit operations on AST



(Abstract Syntax Tree) of buggy and �xed source code via
leveraging GumTree [14] to identify API misuses. Following
existing studies [1], we classify API misuses into different
categories and statistically analyze their distributions. From
the statistical results, we observe various practical guidelines
regarding the importance of different categories of API mis-
uses. For example, API calls (missing/redundant) are the most
frequent (34.05% of all API misuses) and synchronization is
the least frequent (0.06% of all API misuses). In addition,
we �nd that about 38.33% API misuses are replacing API
components (i.e., arguments, receiver, or name), which have
never been systematically explored by any prior studies.

Inspired by the statistical results, we extract a large set
of frequent API-misuse patterns for each category, and carry
out two studies on API-misuse detection. (1) API-misuse
detection in MUBENCH. Following previous studies [1], [15],
we analyze how many API-misuse patterns in MUBENCH can
also be found in the historical bug �xes and compare the
results with existing state-of-the-art techniques. The results
show that 12 out of 32 unique patterns in MUBENCH have
already occurred before, and 7 of them cannot be detected
by any existing techniques, demonstrating the possibility to
build more effective misuse detection tools via analyzing
large-scale historical bug �xes. (2) API-misuse detection in
the wild. Based on our dataset, we perform a user study to
manually analyze the usage constraints of 10 representative
API-misuse patterns to explore whether the mined patterns
can guide the design of future API-misuse detection tools. The
results of the experiments on 688 Apache projects show that
the misuses extracted from historical records still exist in the
latest projects (7,541 potential API misuses in total). We have
reported 149 misuses to developers. Up to now, 57 of them
have already been con�rmed and �xed while 15 are rejected.
The promising initial results indicate that the misuse patterns
complement existing approaches and can potentially improve
the practicability of future API-misuse detection techniques.

In summary, this paper makes the following contributions:
� Dataset. A publicly available dataset including 528,546

historical bug-�xing commits from GitHub (from 2011
to 2018).

� Study. An extensive study to analyze API misuses in the
wild and a systematic classi�cation of them via static
analysis.

� Patterns. A large set of API-misuse patterns, which
complement existing API-misuse detection tools and can
be used for detecting unknown API misuses in the wild.

� Guidelines. Various practical guidelines regarding the
importance of different types of API misuses, such as (1)
among the API misuses covered by prior techniques, API
call is the most frequent (34.05%) while synchronization
is the least frequent (0.06%), (2) Replaced API misuses,
not covered by any prior techniques, account for the
largest portion among all misuses (38.33%), (3) misuse
patterns related to classjava.lang.String account for
the vast majority of all patterns, and (4) most frequent
Replaced API-misuse patterns are related to APIs in the

same class.
� Application. Finally, we explore whether the dataset

and patterns can be applied to API-misuse detection
by leveraging 10 patterns and manually-de�ned heuristic
rules after analyzing the corresponding repair histories in
our dataset. The experimental results show that misuses
extracted from historical records still exist in the latest
versions of Apache projects (149 of them are reported
to developers, 57 have already been con�rmed and �xed,
and 15 are rejected).

II. BACKGROUND AND RELATED WORK

In this section, we �rst introduce previous studies on his-
torical bug �xes and then discuss existing techniques working
on API-misuse detection.

A. Analysis of Historical Bug Fixes

During modern software development, a large number of
historical bug �xes get accumulated on open-source platforms
(e.g., GitHub and SourceForge) and issue tracking systems
(e.g., JIRA). Understanding and analyzing the historical bug
�xes can potentially provide practical guidelines for manual
or automated bug detection [16]–[19], localization [20]–[25],
and repair [26]–[30]. Therefore, various studies have been
conducted on historical bug �xes. Zhong and Su [31] built
a bug-�xing extraction tool named BugStat and analyzed
more than 9,000 real bug �xes from six popular open-source
Java projects. They found that most bug �xes only update
existing source code �les and do not add or delete source
�les. Additionally, they found that most bug �xes are related
to if conditions, which is also con�rmed by Soto et al. [32].
Pan et al. [33] also analyzed the distribution of different bug-
�xing patterns from seven open-source projects. They found
that updating method call parameters andif conditions are
the most common bug �xes. Recently, the benchmark De-
fects4J [34] which includes various real bugs has been widely
used in the �eld of software debugging. Sobreira et al. [35]
studied 395 bugs in Defects4J and found that the top-3 most
applied bug-�xing actions (77% of the total bugs) are addition
of method calls, conditionals, and assignments. Martinez et
al. and Madeiral et al. proposed different bug detection tools
(Coming [36] and PPD [37] respectively) and evaluated them
on Defects4J benchmark with promising performance.

Besides, there were also studies on domain-speci�c bug
patterns or bug pattern distribution across different projects.
Wan et al. [38] used the card-sorting approach to analyze
the characteristics of bugs in Blockchain systems. Meng et
al. [39] conducted an empirical study on StackOver�ow posts
related to code security, which revealed the huge gap between
security theory and coding practices, and informed effective
secure coding assistance. Similarly, Hanam et al. [40] studied
the bug patterns in JavaScript projects and found that the
same bug-�xing patterns exist among different JavaScript
projects. Additionally, this �nding was further con�rmed on
Java projects by Yue et al. [41] and Nguyen et al. [42].
Ray et al. [43] found that although source code is highly



repetitive and predictable (like natural languages), the buggy
code tends to be unnatural. After comparing with different
statistical models, they found that “entropy” is a relatively
good model to measure the similarity between code fragments,
which can be used in search-based bug-�xing approaches.

Although various existing studies have already conducted
on general software bugs, the API misuses have not been
systematically explored yet. Therefore, we aim to perform
an extensive study on the categorization and distribution of
API misuses in the wild, which complements existing re-
search. Furthermore, to the best of our knowledge, our study
involves 528,546 historical bug-�xing commits from open-
source projects and represents the most extensive study on
historical bug �xes to date.

B. Studies on API-misuse Detection

API usage is often subject to certain constraints [1]. For
example, a resource must be released or closed after it is used.
Violations of such usage patterns are regarded as API misuses.
A large number of techniques have been proposed to detect
API misuses automatically over the past decades.

Most approaches utilize data mining techniques to detect
API misuses. Livshits et al. [44] introduced DynaMiner,
aiming to mine software revision histories to detect misuses
violating method pairs or certain mined state machines. Simi-
larly, Li and Zhou [45] proposed PR-Miner to extract implicit
programming rules of APIs by leveraging frequent itemset
mining approaches on source code. Acharya and Xie [9]
proposed to mine speci�cations from static program traces.
Although such techniques utilize different data sources, they
share the same assumption that the more frequent a pattern
is, the higher possibility a pattern is correct. Other similar
techniques also include DMMC [2], [46], GrouMiner [47],
COLIBRI/ML [7], etc. Additionally, Wasylkowski et al. [8]
and Nguyen et al. [48] proposed to employ graph theories for
mining programming artifacts.

Researchers have also proposed data-mining-based tech-
niques to detect other speci�c types of API misuses. Williams
et al. [19] and Hovemeyer et al. [18] targeted missing
NULL pointer checks, while Thummalapenta and Xie focused
on exception-handling related misuses [10] and neglected-
condition misuses [11]. More recently, Liang et al. [17] aimed
at detecting missing NULL pointer and resource-leaking mis-
uses (e.g., missing API invocations to close resource accesses)
via analyzing existing bug �xes of the same projects.

Besides data mining, researchers also employed pro-
gram analysis and machine learning for API-misuse detec-
tion. Ramanathan et al. proposed CHRONICLER [49] and
RGJ07 [50], utilizing path-sensitive control-�ow or data-�ow
analysis to infer function precedence protocols or predicates.
Wasylkowski and Zeller [51] proposed TIKANGA to combine
static analysis with model checking for mining Computation
Tree Logic (CTL) formulas. Nguyen et al. [52] leveraged
Hidden Markov Model to check anomalies of call sequences.
Most recently, Wen et al. [15] applied mutation analysis to
discover API misuse patterns to improve the state-of-the-art.

Although various techniques have been proposed for de-
tecting different types of API misuses, it is not even clear
how different types of API misuses distribute among all
API misuses or projects. Whether the existing techniques
have covered all major types of API misuses is also not
investigated. Furthermore, the recent widely used API-misuse
dataset MUBENCH [12] includes only limited number of API
misuses, and is insuf�cient for evaluating API-misuse detec-
tion techniques. Therefore, in this work, we aim to perform
a systematic and extensive empirical study to characterize the
distribution of various types of API misuses in the wild and
construct a much larger dataset for API-misuse detection.

III. E MPIRICAL STUDY

In this section, we introduce how we construct our dataset
and conduct our study. We �rst introduce the collection of the
dataset used in our study (Section III-A), and then introduce
the categorization of API misuses (Section III-B). Finally, we
discuss how we apply source-code differencing to infer API
misuses from bug �xes (Section III-C).

A. Data Collection

We aim to mine API-misuse patterns from all bug-�xing
commits of Java projects on GitHub. To collect our dataset,
we �rst download all public GitHub events for all program
languages from GitHub Archive [13] between 2011 and 2018.
We then focus on Java projects and exclude all test cases since
they are not functional parts and cannot re�ect API usages.
Next, following prior work [53], we identify a commit as a
bug �x if its commit message contains the keywords (“�x”
or “solve” or “repair”) and (“bug” or “failure” or “issue” or
“error” or “fault” or “defect” or “�aw” or “glitch”). Since
the commit message may not identify bug-�xing commits
accurately, we randomly select 100 commit samples, and two
authors independently analyze them to check whether they are
actual bug �xes. The result is that 94% of the identi�ed bug-
�xing commits are real bug �xes, which provides us more
con�dence for the subsequent analysis. We also keep only
unique commits by removing duplicates. Next, we download
the source �les before and after the code change for each
bug-�xing commit. To mitigate the impact of irrelevant code
changes, we discard commits or �les that meet any of the
following criteria.

� Commits with changes involving more than �ve Java �les
or six lines of source code [53], [54], since such commits
may include many changes not related to bug �xes.

� Non-Java �les as they are irrelevant to Java API misuses.
� Java �les that deleted or newly introduced in the commits.
As a result, we �nally get 528,546 bug-�xing commits

(including 220,053 projects and 744,000 pairs of buggy and
�xed �les) for further API-misuse pattern mining.

B. Categorization of API Misuses

Following prior study [1], we de�ne anAPI misuseas a pair
of a violation type and an API-usage element (e.g., API call,
iteration, condition, and exception handling) involved in a bug



�x. Besides themissingandredundantviolation types studied
in prior study [1], in this paper, we further investigate the
type of replaced, describing that an API is incorrectly invoked
and should be replaced with another one. This type of API
misuses has never been systematically studied before, but is
prevalent in real-world projects (will be shown in the following
sections). In total, we classify API misuses into four basic
categories, including Condition, Exception, Synchronization
and API call, each of which consists of some speci�c sub-
categories. In the following, we demonstrate each category of
API misuses in detail.

Condition. This category includes missing and redundant
guard conditions for certain API invocations. Following the
previous study [1], we further categorize it into the following
three sub-categories:

� NULL checks.This sub-category indicates removing or
newly introducing anif condition with NULL checks for
the variable that is returned by a prior API call or will be
used as the receiver or an argument of a following API
call, e.g.,o.API(); = > if(o!= null ){ o.API();} .

� Return value.This sub-category indicates the removed
or newly introducedif condition that checks the return
value of some APIs, e.g.,o = API(); a = list.get(o)

; = > o = API(); if(o < 0){o = 0;} a = list.get(o

); .
� Object state.This sub-category indicates the removed or

newly introducedif condition relates to some variables
that will be used in an API call immediately, e.g.,a =

list.get(i); = > if(i > 0){a = list.get(i);} .

Importantly, the three sub-categories of Condition are not
orthogonal to each other as oneif condition may belong
to multiple categories. We will introduce this in detail in
Section III-C.

Exception. This category includes missing and redundant
exception handlers, following the de�nitions in the prior
work [1]. More speci�cally, we further divide this category
into two types of �ne-grained code changes, i.e., inserting or
deletingTry or Catch blocks. The reason is that in the studied
commits, we �nd that some �xes are related to a complete
try-catch statement, but some others may only involvecatch

blocks. Therefore, we analyze them separately. Especially, we
regard atry or catch as API-relatediff there exist API calls in
the corresponding code block; otherwise, we consider it as API
irrelevant. Besides, like theCondition category introduced
above, a code change may involve bothtry andcatch blocks.
In such cases, we record these two categories respectively.

� Try. This category subjects to addition or deletion oftry

blocks, in which some API invocations reside.
� Catch. This category subjects to addition or deletion of

catch blocks, whose correspondingtry blocks contain
API invocations.

Synchronization. This category includes missing and redun-
dant synchronizations in multi-threaded environments, follow-
ing the previous study by Amann et al. [1]. The difference is

// replaced arguments
--- row=Math.abs(rand. nextInt(seed) %data.length-1);
+++ row=Math.abs(rand. nextInt() %(data.length-1));
// replaced name
--- nVal=tmp1.substring(0,tmp1. indexOf ("\""));
+++ nVal=tmp1.substring(1,tmp1. lastIndexOf ("\""));
// replaced name and arguments
--- Statement stmt = con. createStatement() ;
+++ PreparedStatement stmt=con.

prepareStatement(sql) ;
// replaced receiver
--- return this_path .equals(that_path);
+++ return Objects .equals(this_path, that_path);

Fig. 1: Examples of replaced bugs

that we classify this type of code changes as an independent
one rather than a sub-category of Condition.

API call. Previous studies have focused on missing [45], [46]
and redundant [52] API call misuses. However, more �ne-
grained API changes (such as changing only the arguments,
names or receiver objects of API invocations) were not been
systematically and extensively studied by existing studies. In
this paper, besides missing and redundant API changes, we
further investigate the distributions of replaced API misuses,
which include four categories in detail. For the missing and
redundant API misuses, previous study [1] already introduced
them (a.k.a. Method Call). To make the article self-contained,
we redundantly explain them brie�y.

� Missing & Redundant API call. Missing API calldenotes
that an API is not called at a certain place, where the API
usage constraint requires the API as a must. For example,
after opening a �le and writing data, the API ofFile.

close() should be called. Otherwise, errors would be
incurred. This kind of code changes is usually related
to those pairwise APIs that have usage dependency.
Similarly, Redundant API callrepresents that an API is
redundantly used at an improper place. For example, we
cannot call the API ofList.remove() to delete elements
in a list that is being iterated over. Otherwise, exceptions
would be raised. This kind of code changes is usually
caused when the API has side-effects, whose execution
may con�ict with the followed functionality.

� Replaced arguments.This category indicates that devel-
opers may pass incorrect arguments or arguments with
wrong orders when invoking an API. This type of code
changes usually appears in classes with multiple methods
with similar functionalities for polymorphism, such as
the �rst example shown in Figure 1, where the desired
API is nextInt() without arguments. On the contrary, a
wrong API nextInt(int) is used with an argumentseed

, which will constrain the upper bound of the generated
random value. Please note that we consider replaced API
misusesiff the types of arguments do not match before
and after the change (order matters), while it is not our
cases to change the referred object of same types. For
example, the code change replacing10 in nextInt(10)

with 100 is not regarded as a replaced API misuse since
the argument type is not changed and thus the API is not





Before introducing the classi�cation process in detail, we
�rst introduce some preliminary concepts and notations:

De�nition 1. An abstract syntax tree (AST) is a partial
ordered tree whose root node can be represented as a tuple
hl; v; p; i; C i , where

� l : denotes the label of the root node of the subtree. (e.g.,
StringLiteral.)

� v: saves the value if it is a leaf node, otherwise is? .
(e.g., 4.)

� p: represents its parent node in a super tree if exists,
otherwise is? .

� i : is the index of the root node in a super treep, it is
unde�ned if p = ? .

� C: contains a sequence of immediate child nodes in the
subtree, it will be; for leaf nodes.

Finally, based on the description of operations in
GumTree [14], it will be straightforward to give the operation
de�nitions under the AST de�nition.

De�nition 2. A GumTree operation is one of the following
AST node changes:

� update(t; t 0): replace the subtree rootedt with a subtree
rootedt0;

� delete(t): deletes subtree rooted nodet.
� insert (t; t 0; i ): adds a new nodet as thei th child of node

t0 if t0 is not ? . Otherwise,t is the new root node and
the previous root node will be the only child oft.

� move(t; t 0; i ): moves subtree rooted nodet to be thei th

child of nodet0.

Particularly, we discard allmoveoperations in the mapping
process as it mainly changes the code structure but not the API
itself, which is hard to be automatically analyzed as misuses.
Next, we use the operations shown in Figure 4 as examples to
demonstrate the mapping process in detail. According to the
explanation for each category of API misuses in Section III-B,
the operationdelete(t1) will be classi�ed asredundantAPI
call, while the operationupdate(t2; t20) will be classi�ed as
Replaced nameof API call. In particular, when the name and
arguments of a method call are changed together, the opera-
tions will be combined as oneReplaced name and arguments
(e.g., updatingcreateStatement() to prepareStatement(

String) in Figure 1). For the operationmove(t4; t5; 2), we
simply ignore it and in fact it does not misuse any API. Finally,
as for the operation ofinsert (t5; t3; 2), from the �gure we can
see that a NULL check condition for the variablewindow is
inserted, which is the returned value of APIgetWindow() . As a
consequence, it will be classi�ed as missing bothNULL checks
andReturn value. Additionally, variablewindow is further used
by API setWindowAnimations() that has control-dependency
on the condition w.r.t.window . As a result, it will be classi�ed
asObject stateas well. Thus, one operation may be classi�ed
into multiple categories inCondition. Based on this process,
we automatically classify GumTree operations into different
categories for further analysis.

IV. EMPIRICAL RESULT ANALYSIS

According to the previous sections, we collect a large
number of API misuses in real-world projects. In this section,
we conduct various empirical studies and discuss the results.

A. Distributions of API Misuses

In this research question, we count the number of edit
operations from GumTree for API misuses and non-API mis-
uses, and then analyze the distribution of different categories
of API misuses. The result shows that there are 576,515
studied operations involving API misuses, which is about
51.7% of all edit operations (i.e., 48.3% for non-API misuses).
This �nding shows that developers tend to introduce API
misuses frequently in modern software development. One
potential reason is that developers are using more and more
third-party libraries to save development efforts and improve
code quality. To our best knowledge, this is the �rst study
quantitatively demonstrating the importance of API-misuse in
modern software systems.

TABLE I: Distribution of API misuses
Category Missing Redundant
API call 142,206 (24.67%) 54,101 (9.38%)

Synchronization 308 (0.05%) 58 (0.01%)

Condition

NULL checks 11,750 (2.04%) 1,320 (0.23%)
Return value 21,900 (3.80%) 3,162 (0.55%)
Object state 29,873 (5.18%) 4,330 (0.75%)
Total 63,523 (11.02%) 8,812 (1.53%)

Exception
Try 6,118 (1.06%) 790 (0.14%)
Catch 7,183 (1.25%) 1,152 (0.20%)
Total 13,301 (2.31%) 1,942 (0.34%)

Replaced API

Rep Receiver 101,985 (17.69%)
Rep Name 45,963 (7.97%)
Rep Args 52,277 (9.07%)
Rep Name&Args 20,744 (3.60%)
Total 220,969 (38.33%)

Table I presents the distributions of different categories of
API misuses described in Section III-B. In the table, the �rst
column represents the categories of misuses, and the last two
columns represent the number of operations formissingand
redundantmisuses, respectively. Particularly, the percentage
in the table represents the number of operations over that
of all API-related operations (i.e., 576,515). As explained
before, different categories may overlap each other (e.g.,
NULL checks and Return value). Besides, we also separately
list the number and percentage of operations related to misuses
of Replaced API, which is an important category in the study.
In addition, for clarity, we omit the operations that are not
related to API misuses as they are not the focus of this paper.
From this table, we have following �ndings.

First, API call and Replaced API misuses are more
prevalent. From the table, the percentages of operations about
API call and Replaced API are more than 70%. Particularly,
38.33% misuses are about Replaced API, which are more than
any other types of API misuses. By analyzing the data, we �nd
that one important reason for such a large portion of Replaced
API misuses is that most of APIs share similar signatures
when their functionalities are close. Therefore, if developers
do not well understand the difference between APIs, they tend
to be confused and use a wrong API. For example, when one



wants to only get the miliseconds of current time,System.

currentTimeMillis() is a preferable API with high ef�ciency.
However, developers tend to misuse the APInew Date().

getTime() , which is simply a wrapper of the former. Due
to the newDate object, the latter API may cause performance
issues, especially when it is intensively used in time-critical
programs. Therefore, if possible, it is better to directly use the
API System.currentTimeMillis() to speed up the underlying
system. The result demonstrates the importance of Replaced
API misuses, and more research efforts are informed to be
dedicated to detecting such misuses.

Second, missing API is more prevalent than redundant.
The results show that developers tend tomiss some API
calls or handlers (such as Condition, Synchronization, and
Exception) rather than writingredundantones. For example,
the percentage of missing API calls is 24.67%, almost three
times higher than the opposite. Similarly, the percentage of
missing condition is also much higher than that of redundant
condition (11.02% vs 1.53%).

Finding 1: (1) API call and Replaced API are the most
prevalent API misuses, and Replaced API misuses ac-
counts for the largest portion among all misuses, calling
for new detection approaches. (2) Developers tend to
miss some components to satisfy the constraint of a
certain API.

B. Frequencies of API Misuse Patterns

In Section IV-A, we have performed quantitative analysis on
API misuses. In this research question, we further qualitatively
analyze the misuse patterns mined from the studied dataset. We
�rst extract a ranked list for each misuse category according to
the cross-project frequencies. The reason we consider cross-
project frequencies is that the mined patterns should be more
helpful in detecting unknown misuses if they widely exist in
more various projects. We remove patterns related toprinting

and logging because they are usually for debugging and
maintenance purposes; we also remove APIs with “Android”
and “Javax” since we target general Java programs. Table II
presents the popular misuse patterns for each general category.
Column 1 denotes the category names. Column 2 presents
the top-5 popular patterns for each category. Column 3 and
4 show the number of projects in which the corresponding
pattern appeared and the total number of pattern occurrences,
respectively. From this table we have following �ndings.

First, API misuses related to classjava.lang.String

account for the vast majority of all misuse patterns.
For example, 18 out of 45 misuses in all categories are from
the class ofString . Also, for both missing API and missing
condition misuses, all top-5 API patterns are related toString

. Speci�cally, we have the following observations. (1) For the
missing condition, most patterns miss checking if the index
of a substring or a character inside aString is valid, such as
String.charAt(int) . (2) There are various ways to �x bugs
related to API misuses. For example, to deal with potential

bugs of String.lastIndexOf(String) , inserting either con-
dition or exception handling is reasonable in historical bug-
�xing dataset. The �ndings show the importance ofString

and guide developers how to detect and �x misuses related to
String by mining bug-�xing dataset.

Second, most Replaced API misuse patterns are related
to the names and arguments in the same class,even though
the Replaced Receiver is the majority in Table I. For example,
developers tend to misunderstand betweenInteger.valueOf

(String) and Integer.parseInt(String) , where the former
returns anInteger object while the latter returns a primitive
int value.

Third, it is possible to design an automated technique
based on the mined patterns to detect unknown misuses
in other projects. For example, there is a misuse pattern
File.mkdir()=>File.mkdirs() in the ranking list. We have
detected such misuses existing in Apache projects, and one
submitted pull request has been accepted by developers, shown
in Figure 7. In fact, there are many valuable patterns in the
ranking list and we will introduce how we are inspired to
improve misuse detection in the following two sections.

Finding 2: (1) API misuses related to classjava.lang

.String account for the vast majority of all misuse
patterns. (2) Most frequent Replaced API misuse patterns
are related to the names and arguments in the same class.
(3) The frequent API misuses in Table II informs new
misuse detection techniques.

C. Study of API Misuse Detection onMUBENCH

In this section, we present the potential recall of misuse de-
tection on the recently widely used benchmark MUBENCH [1],
[12] with the patterns mined from our dataset. We manually
analyze the �x patterns in the MUBENCH and then check
whether the same patternsexist in the studied dataset. We
assume that an ideal detection approach can accurately mine
API-misuse patterns from historical �xes if at least one �x
instance exists in the dataset. In addition, to explore the
complementariness to existing approaches, we also include
the results of state-of-the-art misuse detection approaches,
including MutAPI [15], DMMC [2], Jadet [8], Tikanga [51]
and GrouMiner [47].

Figure 5 presents the overlaps of misuses detected by
different approaches, where “This work” denotes the results
mined from our dataset. As a result, the 53 misuse examples in
MUBENCH involve 32 different kinds of API-misuse patterns
(multiple examples may relate to a same pattern), and 12
patterns can be found in our dataset, which correspond to 22
misuse examples. In other words, 22 misuses in MUBENCH

potentially can be detected with the patterns mined from
historical bug �xes. Besides, 7/12 misuse patterns cannot be
detected by any existing approaches, indicating that mining
misuse patterns from large-scale historical bug �xes has the
potential to further improve the effectiveness of API misuse
detection. For example, the API misuse ofString.getBytes()





TABLE III: Detected API misuses and the feedback of submitted pull requests.
Pattern Reported Sampled Con�rmed Submitted Accepted Rejected
JSONObject.getString(String)

= > JSONObject.optString(String)
17 17 13 13 3 0

JSONObject.getJSONArray(String)
= > JSONObject.optJSONArray(String)

6 6 3 2 0 0

JSONObject.getJSONObject(String)
= > JSONObject.optJSONObject(String)

9 9 1 1 1 0

java.io.File.mkdir()
= > java.io.File.mkdirs()

16 16 10 10 6 4

String.replaceAll(String,String)
= > String.replace(String,String)

1,798 100 87 46 16 8

java.sql.Connection.createStatement()
= > java.sql.Connection.prepareStatement(String)

70 70 9 9 0 0

concurrent.Executors.newCachedThreadPool()
= > concurrent.Executors.newFixedThreadPool(int)

9 9 4 3 1 0

Date.getTime()
= > java.lang.System.currentTimeMillis()

339 100 99 20 10 3

java.io.FileWriter.close()
= > java.io.BufferedWriter.close()

74 74 61 39 20 0

String.equals(String)
= > Objects.equals(String,String)

5,203 100 73 6 0 0

Total 7,541 501 360 149 57 15

private void migrateTagsInResult(String
hostAddress, ...){
...

--- updateTagsForHit(updated,hit. getString ("_id")
,...);

+++ updateTagsForHit(updated,hit. optString ("_id")
,...);

...
if(hitsObject.getInt("total")>currentOffset){

--- migrateTagsInResult(...,rJSON. getString ("
_scroll_id"));

+++ migrateTagsInResult(...,rJSON. optString ("
_scroll_id"));

...
} //https://github.com/apache/unomi/commit/

c447224

Fig. 6: Accepted JSONObject.getString() misuse

rules. Effective and automated rule mining techniques should
be further explored, such as combining machine learning
techniques [52] to characterize more context features, etc.

Details of API-misuse patterns.For clarity, we omit the
class scope of APIs in Table III if no ambiguity will be caused.

JSONObject.getString(String)=>JSONObject.optString

(String) . The former API will throwJSONException when
the JSONObject does not has the query attribute (i.e., the
given argument), which may crash the program if it is
not handled. Therefore, to detect such misuses, we search
the usages of the API where the exception is not properly
tackled. Figure 6 shows one accepted misuse in project
Apache Unomi. In this example, the queried keys may not
exist and exceptions will be thrown and crash the program.
As a result, they are immediately con�rmed and �xed
after reporting to maintainers.getJSONArray(String) and
getJSONObject(String) are similar.

File.mkdir()=>File.mkdirs() . Both File.mkdir() and
File.mkdirs() are used to create a directory and return a
boolean value to indicate whether the creation succeeds or
not. The difference is the latter can recursively create the
directories when nested paths do not exist, whilemkdir cannot.
The failure of directory creation may cause �le access errors
during program running, and is hard to debug. Therefore, when

private Mpack downloadMpackMetadata(String
mpackURI) throws IOException {

File stagingDir = new File(mpackStaging.
toString()+File.separator +
MPACK_TAR_LOCATION);

if (!stagingDir.exists()) {
--- stagingDir. mkdir() ;
+++ stagingDir. mkdirs() ;

} ...} //https://github.com/apache/ambari/
commit/b99bb28

Fig. 7: AcceptedFile.mkdir() misuse

private void runBenchmarkTasks() throws
Exception {
...

--- ExecutorService executor = Executors.
newCachedThreadPool() ;

+++ ExecutorService executor = Executors.
newFixedThreadPool(tasks.size()) ;

...
} //https://github.com/apache/bookkeeper/commit

/0988e12

Fig. 8: AcceptednewCachedThreadPool() misuse

creating a nested directory, the return value of the API call
should be checked to avoid potential errors. Otherwise,mkdirs

should be used to ensure the success of creation. Figure 7
shows one accepted misuse in projectApache Helix.

Executors.newCachedThreadPool()=>Executors.

newFixedThreadPool(int) . Both APIs can create a
thread pool in multiple-thread environment. However,
newCachedThreadPool() has no bounded thread number
and newFixedThreadPool(int) can set the maximal thread
number. In this case,newCachedThreadPool() may consume
more and more memory if it is not constrained and the system
will risk in crashing and throwingOutOfMemoryException .
To detect this kind of misuse, we focus on the cases that
executors created fromnewCachedThreadPool() submit tasks
in a loop without constraints. Figure 8 shows one accepted
misuse in projectApache bookkeeper.

String.replaceAll(String,String)=>String.replace

(String,String) . Both APIs replace all occurrences of



a String with others. However, the �rst argument for
replaceAll is a regular expression, while plain text for
replace . Compiling regex patterns will be more complex
and consequently slower so we detect the misuse of the API
replaceAll if it takes a plainString as the argument.

Connection.createStatement()=>Connection.

prepareStatement(String) . Both APIs are used to execute
SQL statements in Java. However, the former will highly
degrade the performance of database access if intensively
executing the same SQL statements in a loop. In this
case,prepareStatement(String) should be used to enable
the database to precompile the SQL statements and gain
a better performance. We detect this kind of misuse by
focusing on the case that an object ofStatement created by
createStatement() is used in a loop.

Date.getTime() = > System.currentTimeMillis() . We de-
tect this kind of misuses by checking if the object of class
Date only invokes the methodgetTime() . The reason is that
new Date() for creating theDate object is simply a wrapper
of methodSystem.currentTimeMillis() . If it is intensively
invoked in the program, the performance will be damaged.
Using the methodSystem.currentTimeMillis() can also
avoid creating the temporaryDate object.

FileWriter.close() = > BufferedWriter.close().

Indeed, this misuse is caused by creating a wrong writer
object, i.e., FileWriter but not BufferedWriter . Large
amount of input and output (IO) operations will signi�cantly
affect the performance of the program.BufferedWriter

can effectively reduce the times of IO access with caches.
Therefore, we detect such misuses by searchingFileWriter

object that is intensively used in a loop.
String.equals(String) = > Objects.equals(String,

String) . Both APIs are used to check if twoString values
are same. However, It is possible that the �rstString

in String.equals(String) may be NULL so that the
NullPointerException would be thrown. We detect this
kind of misuses by checking the possibility of causing
NullPointerException . That is, there is no guard condition
to check the nullness of the object before using.

As discussed above, a lot of submitted misuses have been
accepted by maintainers. However, there are 15 misuses are re-
jected. We investigate these misuses and �nd some major rea-
sons as follows. (1) There are no performance differences be-
tween two APIs in a sample or small project. For example, in
projectApache CXF, the project maintainer rejected our sub-
mitted misuse by claiming thatSystem.currentTimeMillis()

and new Date().getTime() would not make the difference
since this case occurs in a sample (small) project under
Apache CXF. In Apache NetBeans, the project maintainer
doubts that the changeFile.mkdir()=>File.mkdirs() is just
a theoretical problem so they reject our pull request. (2)
The submitted cases will change the code style of the entire
project. For example, in projectApache NetBeans, the project
maintainers claim that the changeDate.getTime() = > System

.currentTimeMillis() will reduce the readability since other
Date cases can not be changed due to the context.

Finding 4: Based on the 10 Replaced misuse patterns,
we have reported 149 misuses in latest Apache projects;
57 of them have been �xed by project maintainers so far.

V. THREATS TOVALIDITY

The threats to external validity lie in the dataset used. To
collect a large set of data for analysis, we mined bug-�xing
commits from GitHub repositories. The dataset may be noisy
for different reasons (i.e., not real bug �xes). We also de�ne
API misuses as code edit operations related to some APIs in a
bug �x. In fact, it may also inaccurate results. The reasons are
twofold. First, API misuses may occur in regular code changes,
while we compute the percentage of API misuses over the
operations from bug-�xing commits. Second, edit operations
related to APIs may be not real API misuses.

The threats to internal validity relate to our implementation.
To reduce errors, we use GumTree to extract AST operations,
which is widely used in previous studies [30], [36], [37], [56].
However, we cannot get certain misuse categories, such as
missing NULL checks directly from GumTree. Therefore, we
revise GumTree by adding detailed program analysis to map
operations to our classi�cations. To mitigate the threats of
categorization noise from GumTree, we sample 100 opera-
tions for each category and con�rm that 76% operations are
correctly classi�ed. Furthermore, we carefully review our code
and scripts to ensure their correctness as much as we can.

VI. CONCLUSION

In this paper, we conduct an extensive empirical study
on API misuses based on 528,546 bug-�xing commits. We
extract �ne-grained edit operations on AST of source code
and classify them into different categories of API misuses.
We also extract various frequent API-misuse patterns based
on the categories. The results show that API misuses are
prominent in practice and provide a set of guidelines for future
research. Finally, based on our dataset, we perform a user
study to manually analyze the usage constraints of 10 patterns
to explore whether the mined patterns can guide the design
of future API-misuse detection tools. The results show that
57 misuses (out of 149 reported misuses) have been �xed,
indicating the importance of historical API misuses and the
promising future for API-misuse detection. However, the cur-
rent implementation still depends on our handcrafted detection
rules. Effective and automated rule mining techniques should
be further explored, such as combining machine learning [52]
to characterize more context features, etc.

All experimental data and source code are open-source that
can be downloaded at: https://github.com/BID3/BID3.
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